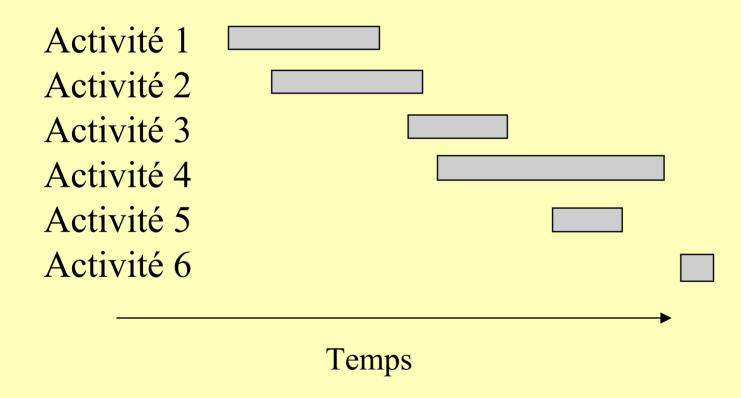


Définitions et objectifs

- Projet: ensemble de tâches visant à atteindre un objectif commun
- **Programme**: projet très complexe, de longue haleine
- Gestion de projet: planifier, ordonner (les tâches dans le temps), superviser, contrôler le projet ou le programme ainsi que les ressources requises afin de réaliser l'objectif fixé, à l'intérieur des limites technologiques, de coût et de temps données
- Utilisé en général pour
 - ✓ des projets ou programmes complexes
 - ✓ avec des multiples tâches interdépendantes
 - ✓ qui requièrent de moyens importants
 - ✓ et plusieurs intervenants


Méthode

- S Préciser l'objectif
- Identifier les tâches (activités)
 - ✓ exécution indépendante
 - ✓ dimension et complexité "gérables"
 - ✓ autorité d'exécution
- ☑ Définir la structure organisationnelle d'exécution et de contrôle
- S Estimer la durée et les ressources pour chaque tâche
- Estimer les risques et prévoir des marges
- Calculer la durée totale et le coût total du projet
- Oresser un calendrier d'échelonnement des activités
- Allouer les ressources
- Mesurer, surveiller, ajuster le programme ...

Outils de contrôle

- S Facteurs: temps, coût, disponibilité et consommation des ressources
- Mombreuses méthodes "graphiques"
 - ✓ diagrammes de Gantt
 - ✓ (voir Exibit 3.3, pg 63, Chase, Aquilano & Jacobs 9^{ième})

Exemple de diagramme de Gantt

Ordonnancement de projet

- Les méthodes les plus utilisées sont basées sur de modèles et méthodes de réseaux
 - ✓ Méthode du chemin critique Critical Path Method - CPM
 - ✓ Technique d'évaluation et de révision de programme Program Evaluation and Revue Technique - PERT

CPM – "Critical Path Method"

- S Pour Du Pont (et Remington-Rand) (1957)
- Marie Projet: entretien préventif d'usines chimiques
- Marcha Projet répétitif de nature connue
- But: compresser la durée du projet, en accélérant certaines tâches, contre coûts additionnels

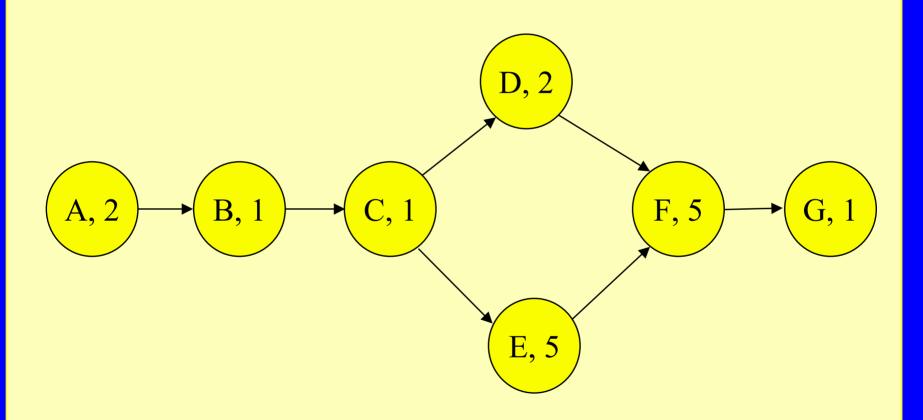
PERT – "Program Evaluation and Revue Technique"

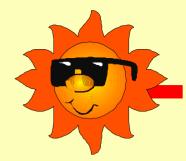
- S Pour la marine américaine (1958)
- Projet missiles Polaris
- Projet innovateur de nature incertaine
- Buts: calculer à partir des estimés de la durée de chaque activité (trois estimés: optimiste, pessimiste, « normal »), la durée moyenne et la variance du programme (et sous-programmes)
 - ⇒ calculer la probabilité de finir à temps

PERT ou CPM?

- Ancêtre commun: les diagrammes de Gantt (pas de procédures d'estimation des temps)
- Au début: méthodes différentes
- Actuellement: une seule méthode : PERT/CPM
- Bâtir un réseau d'activités et y trouver le plus long chemin = le chemin critique

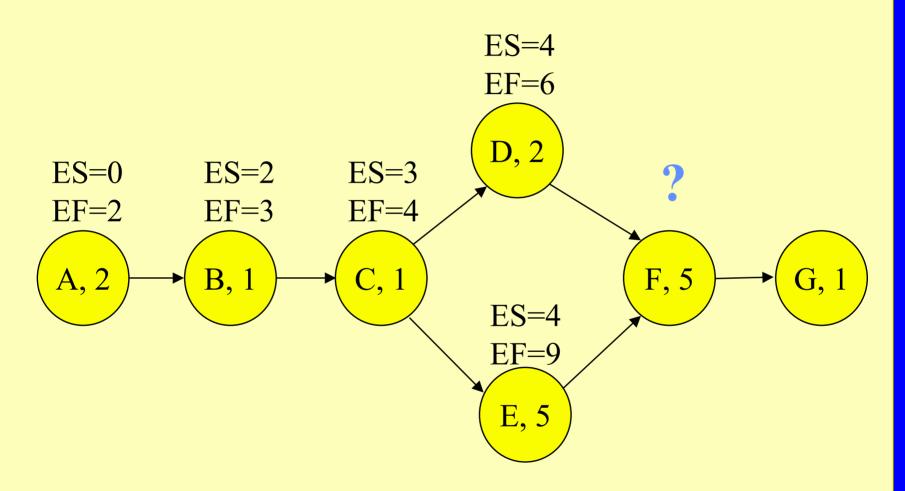
Construction du réseau

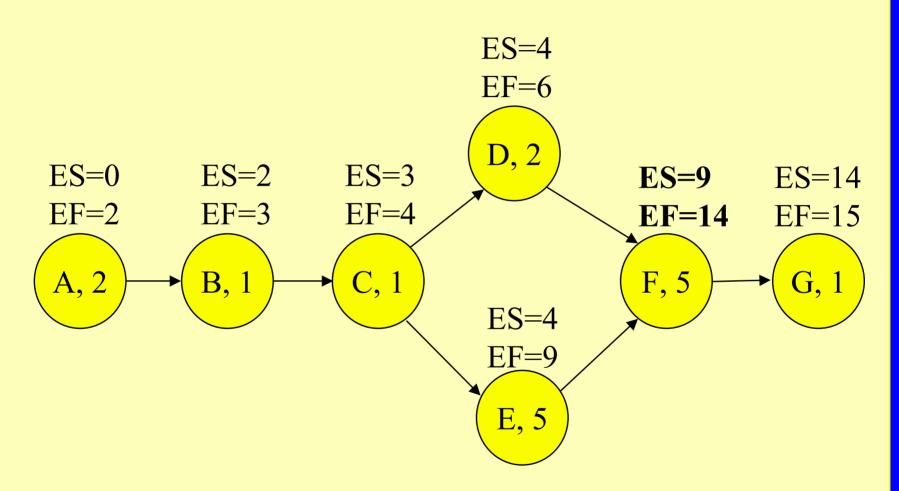

- Nœuds = Activités
 Chaque activité a une *durée* et des *activités immédiatement la précédant*
- ✓ Arcs = Relations de précédence
- CS Le réseau peut aussi être bâti avec des activités sur les arcs et des instants temporels aux nœuds


Exemple CPM

Activité	Nom	Prédécesseurs	Durée (sem)
Identifier les besoins des clients	A	aucun	2
Rédiger et soumettre la proposition	В	A	1
Obtenir l'approbation	C	В	1
Développer esprit et buts d'équipe	D	C	2
Entraîner les employés	E	C	5
Former les groupes TQC	F	D, E	5
Ecrire le rapport d'évaluation	G	F	1

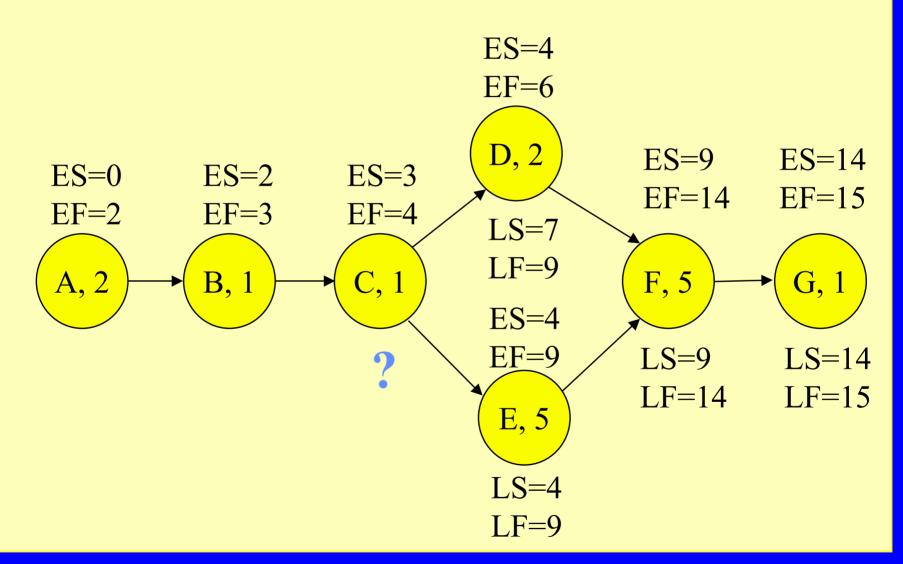
Le réseau

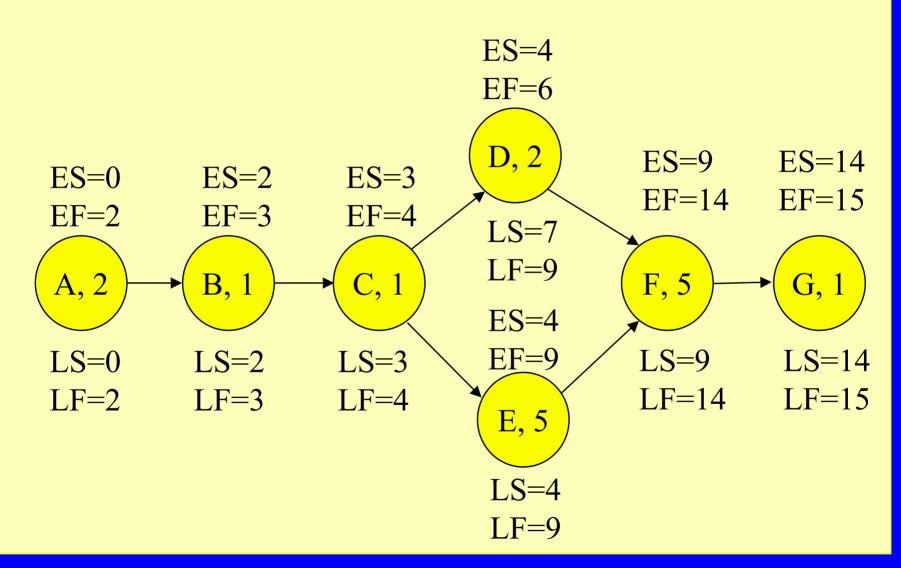

Chemin critique Moments au plus tôt


- Début au plus tôt ("Earliest Start Time") ES

 L'instant le plus rapproché du début du projet pour commencer l'activité
- S Fin de toutes les tâches précédentes
- Fin au plus tôt ("Earliest Finish Time") *EF*Début au plus tôt + Durée
- CS ES d'une tâche = max {EF des précédentes}
- ☑ Calcul par passe "avant" (origine vers fin)

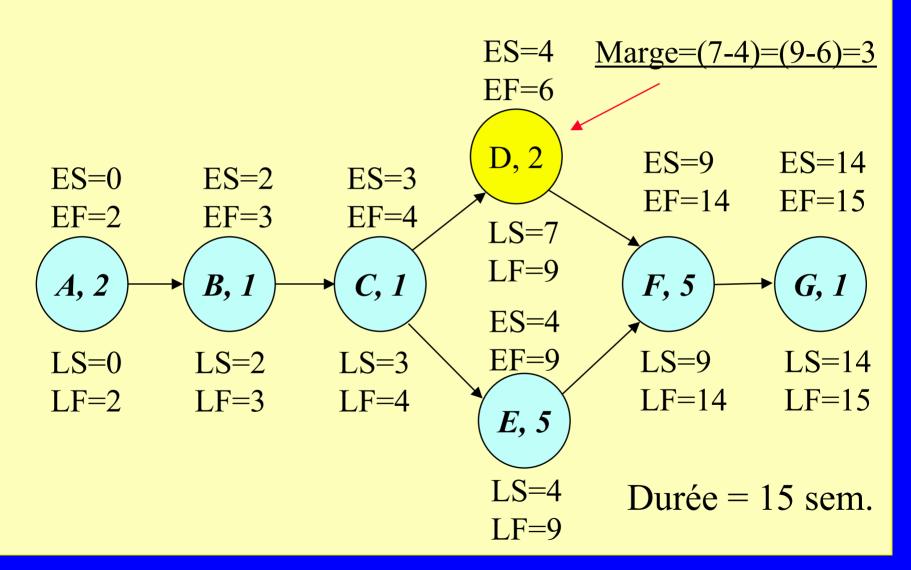
CPM - Temps au plus tôt


CPM - Temps au plus tôt

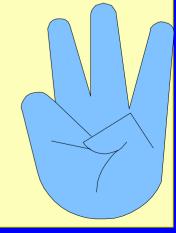

Chemin critique Moments au plus tard

- S Fin au plus tard ("Latest Finish Time") LF
- 🗷 L'instant le plus tardif pour compléter une activité sans retarder le projet
- Calcul par passe "à rebours" (fin vers origine)

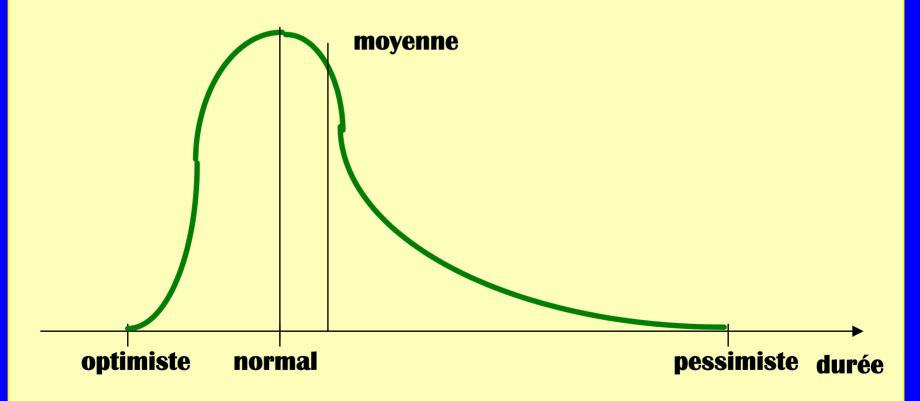
CPM - Temps au plus tard


CPM - Temps au plus tard

Chemin critique


- ✓ Marge ("Slack") d'une tâche =
 Début au plus. tard Début au plus tôt (*LS ES*)
 Fin au plus tard Fin au plus tôt (*LF EF*)
 ⇔ Retard maximum « admissible »
- **™** Tâche critique = marge nulle
- Chemin critique = suite d'activités à marge nulle du début à la fin du projet

CPM - Chemin critique



PERT — Trois estimations de durée

- Ourée de chaque activité assumée « aléatoire » (distribution de probabilité asymétrique *beta*)
- Trois estimations:
 - ✓ optimiste (le plus vite)
 - ✓ pessimiste (le plus lent)
 - ✓ la plus probable (normal)
- Ourée espérée (moyenne) de l'activité = (vite + 4normal + lent) / 6
- \bigcirc Écart type $(\sqrt{variance})$ de l'activité = (lent vite) / 6
- Chemin critique avec durées moyennes

Distribution asymétrique – Beta

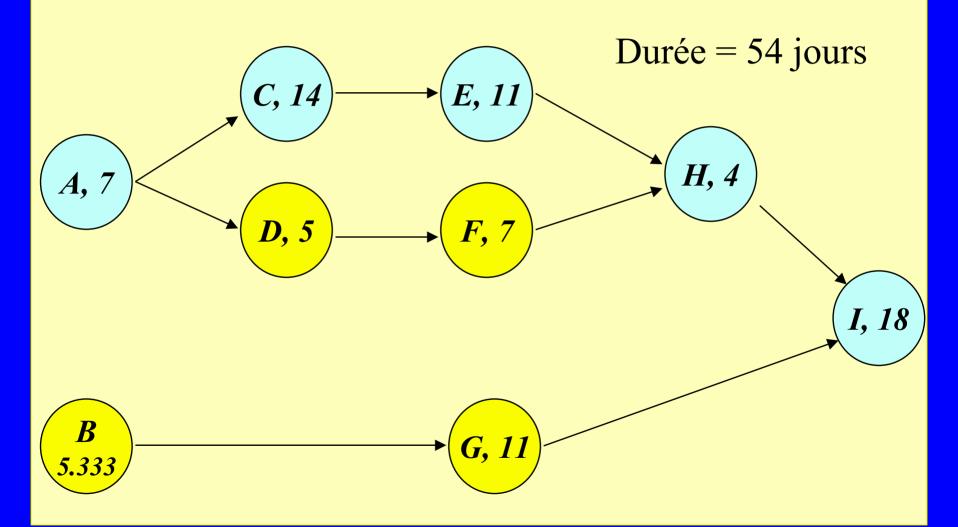
asymétrique: normal - optimiste « = pessimiste - normal

PERT — Potentiel

S Possibilité de calculer la *probabilité de compléter le projet à temps* (durée totale = loi normale)

$$Z = \frac{D - E(EFP)}{\sqrt{\sum_{c} \sigma_{cp}^{2}}}$$

- \checkmark D = Date prévue de fin = Durée prévue
- ✓ E(EFP) = Date de fin au plus tôt $espérée \Leftrightarrow Durée espérée$
- $\sqrt{\sum \sigma_{cp}^2}$ = Somme des variances des activités
- Probabilité {Compléter le projet à temps} = Probabilité { $E(EFP) \le D$ } = Prob $\{N(0,1) \le Z\}$
- "facile" à calculer


Exemple PERT

	Prédécesseurs	Durée estimée (jours)		
Tâche	immédiats	Optimiste	Probable	Pessimiste
Α	-	3	6	15
В	-	2	4	14
С	Α	6	12	30
D	Α	2	5	8
E	С	5	11	17
F	D	3	6	15
G	В	3	9	27
Н	E,F	1	4	7
I	G, H	4	19	28

PERT - Durée espérée et variance

Tâche	Prédécesseurs immédiats	Durée espérée	Variance
А		7	4
В	1	5.333	4
С	Α	14	16
D	Α	5	1
E	О	11	4
F	D	7	4
G	В	11	16
Н	E,F	4	1
	G, H	18	16

PERT Chemin critique

Résultats

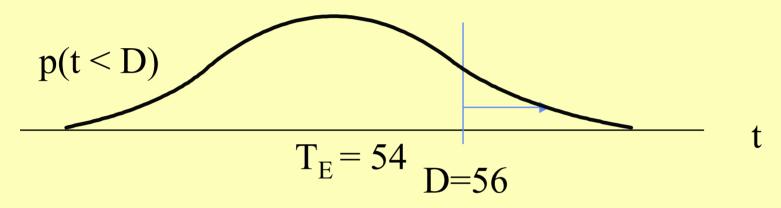
- E(EFP) = Durée espérée = 54 jours
- Chemin critique: A, C, E, H, I
- Variance = 41 jours

Exemple PERT

Quelle est la probabilité de finir en 53 jours ou moins?

$$p(t < D)$$

$$D=53$$


$$Z = \frac{D - T_E}{\sqrt{\sum \sigma_{cp}^{2}}} = \frac{53 - 54}{\sqrt{41}} = -.156$$

$$P(Z < -.156) = .436$$

Il y a une probabilité de 43,6% de finir en 53 jours ou moins

Exemple PERT

Quelle est la probabilité de finir en plus de 56 jours?

$$Z = \frac{D - T_E}{\sqrt{\sum \sigma_{ep}^2}} = \frac{56 - 54}{\sqrt{41}} = .312$$

$$P(Z < -.312) = .378$$

Il y a une probabilité de 37,8% de finir en plus de 56 jours

PERT — Commentaires

- Hypothèses pas toujours faciles à valider
 - ✓ Distribution beta pour la durée de chaque tâche
 - ✓ Les durées des tâches indépendantes les unes des autres
- Onnées empiriques, lorsqu'elles existent, permettent de valider statistiquement ces hypothèses
- **™** Approche alternative : simulation
- Onnées empiriques (historiques, observations, ...) sont encore plus nécessaires.

Compromis coûts — durée

- Accélérer le projet en accélérant certaines tâches par un accroissement des ressources
- Coût et durée normaux
 Coût et durée accélérés
 Coûts « indirects » journaliers
- Quelles activités accélérer et de combien afin de minimiser les coûts totaux du projet?
- "à bras" activité par activité "optimal": programmation linéaire

